Jueves 25 de Julio de 2024

Hoy es Jueves 25 de Julio de 2024 y son las 16:11 - Una manera distinta de informar, con otro enfoque

  • 22º

22°

EL CLIMA EN Buenos Aires

CIENCIA Y TECNOLOGíA

23 de junio de 2023

Experimentan con un nuevo tipo de material donde la luz y el sonido se acoplan al mismo “ritmo”

Por: Carlos Rodriguez

El hallazgo de especialistas del CONICET y colegas de Alemania podría tener potenciales implicancias en el campo de las tecnologías cuánticas.

A partir de una red de nanoláseres acoplados, especialistas del CONICET y colegas de Alemania reportaron un novedoso comportamiento en un metamaterial de fluidos de luz y sonido. Descubrieron que las nanoestructuras estudiadas se comportan con patrones “temporales” al fijar sus frecuencias de emisión de luz de forma periódica en una diferencia constante.

Los resultados del trabajo, que fueron reportados en la revista Nature Communications, ayudarán a comprender mejor y a manipular el fenómeno de acoplamiento de señales de luz y sonido a escalas diminutas. Esto podría tener un impacto en el desarrollo de tecnologías cuánticas y las comunicaciones, como por ejemplo en la transducción de señales de microondas a luz.

El estudio fue realizado por docentes e investigadores del CONICET, del Instituto Balseiro y del Centro Atómico Bariloche, la Comisión Nacional de Energía Atómica (CNEA) y el Paul-Drude-Institut de Alemania.

Los experimentos se basan en la arquitectura de una red de nanocavidades o “trampas” optomecánicas, que son estructuras fabricadas con semiconductores que funcionan como espejos diminutos. Así se genera, a partir del estímulo de un láser externo, una mezcla de luz y electrones en los también llamados “resonadores” o “osciladores” polaromecánicos.

Ese combinado de fotones -la luz- y electrones es un fenómeno físico llamado “condensado de polaritones”, o también llamado “fluido de luz”. Este genera de manera espontánea fonones, es decir, vibraciones mecánicas de los espejos (sonido), que altera al sistema y por lo tanto a la luz dentro de ella (que generó espontáneamente al sonido), siendo un proceso donde se afectan mutuamente. En esa “danza” entre luz y sonido de la red de nanolaseres, los físicos hallaron un patrón.

¿Cómo midieron esas frecuencias y sus diferencias? Analizaron la luz emitida como producto de la interacción en estos nuevos materiales entre fotones (luz), electrones y fonones (sonido). Para tener una dimensión: un hercio (Hz) corresponde a una repetición por segundo de un fenómeno dado, mientras que un gigahercio es igual a mil millones de hercios. En las nuevas redes de comunicaciones con celulares 5G, se transmite información de unos pocos gigahercios a una veintena de gigahercios.

“Es esa diferencia de frecuencia de la luz, del campo electromagnético, lo que se fija espontáneamente en diferencias que coinciden con cantidades enteras de la frecuencia del sonido”, comentó Alejandro Fainstein, uno de los autores del estudio, investigador del CONICET en el Instituto de Nanociencia y Nanotecnología (INN, CONICET-CNEA) y egresado y docente del Instituto Balseiro (IB), institución dependiente de la CNEA y de la Universidad Nacional de Cuyo.

En los experimentos reportados en el reciente trabajo, el patrón temporal encontrado -la repetición en varios experimentos que sorprendió al equipo- es ese “lockeo de frecuencia”. Ocurre debido a que el fluido de luz y sonido se comunica entre cavidades, donde hay absorción y pérdida de energía, pero que resulta en un patrón de diferencias constantes entre las frecuencias emitidas de la luz. Esas diferencias corresponden justamente a la frecuencia del sonido o múltiplos enteros de la misma.

“Los resonadores o nanotrampas se comunican, y la frecuencia se bloquea a una diferencia constante”, sintetizó Axel Bruchhaussen, investigador del CONICET en el INN y en el IB.

“Al igual que en un cristal se observa un patrón o una periodicidad espacial, una repetición en cómo se organiza la estructura de las moléculas, en nuestros experimentos observamos un patrón una periodicidad temporal en la luz emitida originada en esa diferencia de frecuencias en las vibraciones mecánicas resultantes de este combinado de fotones, electrones y fonones, o sea, de luz y sonido”, comentó Bruchhaussen.

Dimitri Chafatinos, primer autor del estudio y becario doctoral del CONICET en el INN y en el IB, dijo desde Berlín, donde ahora realiza una estadía de investigación en el Paul-Drude-Institut, que todo el trabajo fue un desafío. Y agregó: “Fue emocionante el proceso que viví. El inicio, ir a buscar algo y no saber qué es. El sistema en sí es muy rico físicamente, hay mucho por explorar, muchas preguntas por responder y mucho más aún por indagar”.

Miradas desde Francia

Dos científicos que no participaron en la investigación comentaron, desde Francia, los aportes del nuevo trabajo liderado por Fainstein.

Alejandro Giacomotti, director de investigación del CNRS en el Laboratoire Photonique, Numérique et Nanosciences (LP2N) del Instituto de Óptica de Bordeaux, destacó que estos nanoláseres -también llamados “osciladores lineales – no se sincronizan a una misma frecuencia, sino que lo hacen con una diferencia de frecuencia que corresponde a un número entero de la energía del fonón, que es de 20 GHz de forma mediada por los fonones. “Así, se demuestra una funcionalidad única de estas redes de estado sólido: el control coherente ultra-rápido, abriendo una puerta interesante a la preparación de estados cuánticos vía las llamadas transiciones de Landau-Zener-Stuckelberg”, comentó el físico.

Por su parte, Ariel Levenson, presidente de la Société Française d’Optique, y que tampoco participó en esta investigación, explicó que los fotones, partículas elementales de luz, los electrones, portadores de electricidad, y los fonones, que transportan el sonido, son omnipresentes pero rara vez pueden colaborar. El trabajo “demuestra un avance suplementario al coordinar la interacción fotón-electrón-fonón”, agregó Levenson. Y destacó que manipular de manera eficaz una interacción podría abrir la posibilidad de “una nueva ingeniería de interacción luz-materia con aplicación potencial al procesamiento avanzado de información, tanto en régimen clásico como cuántico”.

¿Cuáles serán los próximos pasos? Según destacaron los investigadores, hay propuestas teóricas de que un sistema como el estudiado podría propagar luz entre los láseres “de manera no recíproca”. En palabras simples, esto permitiría que la luz viaje para la derecha, por ejemplo, pero no para la izquierda. También hay propuestas de usar estas redes complejas como “simuladores cuánticos”. Habrá que ver qué nuevas aplicaciones se generan a partir de este nuevo concepto de metamaterial de fluidos de luz y sonido, indicaron.

 

Referencia bibliográfica: Chafatinos, D. L., Kuznetsov, A. S., Reynoso, A. A., Usaj, G., Sesin, P., Papuccio, I., … & Fainstein, A. Asynchronous locking in metamaterials of fluids of light and sound. Nat Commun 14, 3485 (2023).

https://doi.org/10.1038/s41467-023-38788-9

COMPARTIR:

Comentarios